首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5340篇
  免费   667篇
  国内免费   269篇
电工技术   28篇
综合类   98篇
化学工业   1018篇
金属工艺   576篇
机械仪表   409篇
建筑科学   11篇
矿业工程   24篇
能源动力   208篇
轻工业   52篇
水利工程   4篇
石油天然气   16篇
武器工业   27篇
无线电   1838篇
一般工业技术   1460篇
冶金工业   98篇
原子能技术   169篇
自动化技术   240篇
  2024年   3篇
  2023年   151篇
  2022年   167篇
  2021年   173篇
  2020年   230篇
  2019年   240篇
  2018年   206篇
  2017年   299篇
  2016年   357篇
  2015年   374篇
  2014年   410篇
  2013年   463篇
  2012年   451篇
  2011年   459篇
  2010年   272篇
  2009年   270篇
  2008年   176篇
  2007年   259篇
  2006年   273篇
  2005年   154篇
  2004年   113篇
  2003年   124篇
  2002年   92篇
  2001年   115篇
  2000年   89篇
  1999年   96篇
  1998年   43篇
  1997年   31篇
  1996年   35篇
  1995年   21篇
  1994年   14篇
  1993年   18篇
  1992年   19篇
  1991年   12篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   13篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   12篇
  1982年   5篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有6276条查询结果,搜索用时 187 毫秒
1.
2.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
3.
In this study, silica based slurries for stereolithographic printing of glass structures are developed and characterized. Stereolithography has the potential to print complex structures with high resolution. Therefore, acrylate based photocurable slurries have been developed and their viscosities are examined as a function of the solid loading. A critical shear rate can be derived, which must not be exceeded during the printing process. Therefore, rheological characterizations provide important insights into the printing process and the ability to produce samples with precise structures. Other properties such as polymerization time and curability kinetic were investigated with time dependent attenuated total reflection infrared spectroscopy (ATR-IR). Afterwards, the slurries were printed on a commercial printer operating with visible light. For debinding the printed green bodies, the decomposition temperatures were derived from thermogravimetric analysis in order to obtain stable and transparent samples.  相似文献   
4.
Fracture toughness property is of significant importance when evaluating structural safety. The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results. When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution, it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors. In recent years, numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior. This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints. The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile, ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation. For the interface of ductile-ductile materials, the strain concentration on the softer material side is responsible for ductile fracture initiation. For the ductile-brittle interface, the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side. In the case of brittle-brittle interface, a careful matching is required, because the strength mismatch decreases the fracture driving force in one side, whereas the driving force in another side is increased. The results are deemed to offer support for the safety assessment of welded structures.  相似文献   
5.
In this paper we report on the preparation and laser performance of transparent 3at.% Yb:Sc2O3 ceramics by reactive sintering of commercially available powders under vacuum followed by hot isostatic pressing (HIP). Combinations of different vacuum sintering temperatures (1650 °C and 1750 °C) and different HIP treatments (1700 °C and 1800 °C at 200 MPa) were tested in order to understand how these steps influence the microstructure and thus the optical and lasing properties of the ceramic samples. All the samples showed a good optical quality. The microstructure analysis and the laser tests showed that the vacuum pre-sintering temperature is the key factor determining the quality of the samples and the laser performances. The best values of slope efficiency i.e. ηL = 50 % and output power i.e. Pout = 6.62 W were obtained for the sample pre-sintered under vacuum at 1650 °C and hot isostatically pressed at 1800 °C.  相似文献   
6.
The results of formation of the high density effective scintillation ceramics consisting of two compounds of the cubic symmetry, LuAG:Ce and Lu2O3 (LuAG:Ce + Lu2O3), are described. Powders of a novel material LuAG:Ce + Lu2O3 were synthesized by co-precipitation method. The introduction of Lu2O3 into LuAG:Ce was shown to increase the density of the ceramics obtained and modify its scintillation properties.  相似文献   
7.
Monomers and their polymers containing 3-arylcarbazolyl electrophores have been synthesized by the multi-step synthetic route. The materials were characterized by thermo-gravimetric analysis, differential scanning calorimetry and electron photoemission technique. The polymers represent materials of high thermal stability having initial thermal degradation temperatures in the range of 331–411 °C. The glass transition temperatures of the amorphous polymeric materials were in the rage of 148–175 °C. The electron photoemission spectra of thin layers of monomers showed ionization potentials in the range of 5.6–5.65 eV. Hole-transporting properties of the polymers were tested in the structures of organic light emitting diodes with Alq3 as the green emitter. The device containing hole-transporting layers of polyether with 3-naphthylcarbazolyl groups exhibited the best overall performance with a maximum current efficiency of 3.3 cd/A and maximum brightness of about 1000 cd/m2.  相似文献   
8.
The influence of the environment on the excited state transitions of meso-tetrakis(p-sulfonatophenyl) porphyrin (TPPS) is reported. TPPS was investigated in protonated and non-protonated forms, and in the presence of the cationic cetyltrimethylammonium bromide (CTAB) micelles. The singlet excited-state absorption spectra were measured by using the white-light continuum Z-scan technique and the triplet–triplet absorption spectra were acquired employing an association of laser flash photolysis and Z-scan techniques. Our results show that the perseveration of the molecular symmetry, upon excitation, depends on the state of multiplicity of the molecules, as well as on the environment and structural characteristics of the porphyrin. Additionally, it was observed that for excited molecules, the ring distortion caused by the protonation of porphyrin ring has great influence on the changes observed for the symmetry and vibronic structure. The results clearly show that the porphyrin investigated is a promising candidate for optical limiting applications for all investigated environments.  相似文献   
9.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
10.
《材料科学技术学报》2019,35(7):1309-1314
Degenerate pattern is a seemingly disordered morphology but it exhibits the inherently ordered crystal connected with tip-splitting and limited stability which makes it difficult to observe in the metallic system. Here we employ (100)[011] orientated planar-front seeds using directional solidification and reveal the fundamental origins of the degenerate pattern growth in an Al-4.5 wt% Cu alloy. We find that the spacing of the tip-splitting (λ) in the degenerate of the alloys followed a power law, λV−0.5, and the frequency (f) of the splitting was related to the growth velocity (V) by ƒ∝V1.5. The dimensionless growth direction (θ/θ0) increased monotonously and approached 0.6 with faster velocity, attributed to its anisotropy in the interface kinetics. Once growth velocity exceeded a threshold, two types of pattern transitions from degenerate to regular dendrites were proposed. One of them exhibited a random and chaotic mode and the other underwent a rotation in growth direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号